Bond-based peridynamics

The initial version of peridynamics is the bond-based (BB) formulation. [Sil00]

Here, a pairwise force function $\boldsymbol{f}$ is defined and calculated for each bond of two material points, which depends on the strain of the bond and is aligned in its direction:

\[ \boldsymbol{f} = c \, \varepsilon^{ij} \, \boldsymbol{n} \; .\]

Here the micro-modulus constant [SA05]

\[c = \frac{18 \, \kappa}{\pi \, \delta^4} \;\]

and the strain of the bond [SB05]

\[\varepsilon^{ij} = \frac{l^{ij}-L^{ij}}{L^{ij}}\]

with bond lengths $L^{ij} =\left|\boldsymbol{\Delta X}^{ij}\right|$ and $l^{ij} =\left|\boldsymbol{\Delta x}^{ij}\right|$ are used.

The direction vector

\[\boldsymbol{n} = \frac{\boldsymbol{\Delta x}^{ij}}{l^{ij}}\]

is oriented in the direction of the bond.

To get the resulting body forces, now the force function is integrated over the whole body:

\[\boldsymbol{b}^{\mathrm{int},i} = \boldsymbol{b}^{\mathrm{int}} (\boldsymbol{X} ^ {i} , t) = \int_{\mathcal{H}_i} \boldsymbol{f} \; \mathrm{d}V^j \; .\]

SizeSymbolUnit
Pairwise force function$\boldsymbol{f}$$\left[\frac{\mathrm{kg}}{\mathrm{m}^5\mathrm{s}^2}\right]$
Micro-modulus constant [SA05]$c$$\left[\frac{\mathrm{kg}}{\mathrm{m}^5\mathrm{s}^2}\right]$
Bond strain$\varepsilon^{ij}$$[-]$
Bond in $\mathcal{B}_0$$\boldsymbol{\Delta X}^{ij}$$[\mathrm{m}]$
Bond in $\mathcal{B}_t$$\boldsymbol{\Delta x}^{ij}$$[\mathrm{m}]$
Bond length in $\mathcal{B}_0$$L^{ij}$$[\mathrm{m}]$
Bond length in $\mathcal{B}_t$$l^{ij}$$[\mathrm{m}]$
Direction vector$\boldsymbol{n}$$[-]$
Volume of point $j$$V^j$$\left[\mathrm{m}^3\right]$
Internal force density$\boldsymbol{b}^{\mathrm{int},i}$$\left[\frac{\mathrm{kg}}{\mathrm{m}^2\mathrm{s}^2}\right]$