Non-ordinary state-based peridynamics
Non-ordinary state-based formulations have been developed to extend state-based peridynamics. Hereafter, the correspondence formulation of non-ordinary state based peridynamics is considered, which uses an elastic model from the classical theory. [SEW+07]
First, the symmetric shape tensor is calculated:
\[\boldsymbol{K}^i = \boldsymbol{K}(\boldsymbol{X}^i) = \int_{\mathcal{H}_i} \omega \, \boldsymbol{\Delta X}^{ij} \otimes \boldsymbol{\Delta X}^{ij} \; \mathrm{d}V^j \; .\]
Here, $\omega$ is an influence function to weigh points differently. The deformation gradient is thus approximated as [SEW+07]
\[\boldsymbol{F}^i = \boldsymbol{F}(\boldsymbol{X}^i,t) = \left(\int_{\mathcal{H}_i} \omega \, \boldsymbol{\Delta x}^{ij} \otimes \boldsymbol{\Delta X}^{ij} \; \mathrm{d}V^j\right) \left(\boldsymbol{K}^i\right)^{-1} \; .\]
Using the deformation gradient, now the first Piola-Kirchhoff stress tensor can be determined with the Helmholtz energy density $\Psi$:
\[\boldsymbol{P}^i = \boldsymbol{P}(\boldsymbol{X}^i,t) = \frac{\partial \Psi}{\partial \boldsymbol{F}^i} \; .%= \boldsymbol{F} \boldsymbol{S} \; .\]
Using the calculated variables, the force vector state can now be determined by [SEW+07]
\[\boldsymbol{t}^i = \omega \boldsymbol{P}^i \left(\boldsymbol{K}^i\right)^{-1} \boldsymbol{\Delta X}^{ij} \; .\]
Size | Symbol | Unit |
---|---|---|
Bond in $\mathcal{B}_0$ | $\boldsymbol{\Delta X}^{ij}$ | $[\mathrm{m}]$ |
Bond in $\mathcal{B}_t$ | $\boldsymbol{\Delta x}^{ij}$ | $[\mathrm{m}]$ |
Influence function | $\omega$ | $[-]$ |
Volume of point $j$ | $V^j$ | $\left[\mathrm{m}^3\right]$ |
Symmetric shape tensor | $\boldsymbol{K}^i$ | $\left[\mathrm{m}^5\right]$ |
Deformation gradient | $\boldsymbol{F}^i$ | $[-]$ |
Helmholtz energy density | $\Psi$ | $\left[\frac{\mathrm{kg}}{\mathrm{m}\mathrm{s}^2}\right]$ |
Piola-Kirchhoff stress tensor | $\boldsymbol{P}^i$ | $\left[\frac{\mathrm{kg}}{\mathrm{m}\mathrm{s}^2}\right]$ |
Force vector state | $\boldsymbol{t}^i$ | $\left[\frac{\mathrm{kg}}{\mathrm{m}^5\mathrm{s}^2}\right]$ |