The old Peridynamics.jl logo
(Visualization made with ParaView)
The Julia logo crashing into a plate and braking it into many pieces.
First, we have to load the Peridynamics.jl
package.
using Peridynamics
Plate
Now we create the plate in the background by specifying the dimensions and the point spacing.
lxy = 0.1
lz = 0.01
ΔX₀ₚ = lxy / 50
posₚ, volₚ = uniform_box(lxy, lxy, lz, ΔX₀ₚ)
plate = Body(BBMaterial{EnergySurfaceCorrection}(), posₚ, volₚ)
12500-point Body{BBMaterial{EnergySurfaceCorrection}}:
1 point set(s):
12500-point set `all_points`
Then we define the material properties for the plate.
- Horizon $\delta = 3.015 \Delta x_p$
- Density $\rho = 2000\,\mathrm{kg}\,\mathrm{m}^{-3}$
- Youngs modulus $E = 30 \times 10^9 \, \mathrm{Pa}$
- Griffith's parameter $G_c = 10 \, \mathrm{N} \, \mathrm{m}^{-1}$
material!(plate; horizon=3.015ΔX₀ₚ, E=30e9, rho=2000, Gc=10)
Julia-logo spheres
A spherical body is created, where only the points inside a specified radius are preserved to create the spheres of the logo. These points are then copied three times and moved to the correct position to represent the logo.
Ø = 0.03
ΔX₀ₛ = Ø / 20
cz = Ø / 2 + lz / 2 + 1.1 * ΔX₀ₛ
r_logo = Ø / 2 + 0.2 * Ø
sxy, cxy = r_logo * sin(30π / 180), r_logo * cos(30π / 180)
posₛ₁, volₛ₁ = uniform_sphere(Ø, ΔX₀ₛ; center_y=r_logo, center_z=cz)
posₛ₂, volₛ₂ = uniform_sphere(Ø, ΔX₀ₛ; center_x=cxy, center_y=-sxy, center_z=cz)
posₛ₃, volₛ₃ = uniform_sphere(Ø, ΔX₀ₛ; center_x=-cxy, center_y=-sxy, center_z=cz)
sphere₁ = Body(BBMaterial(), posₛ₁, volₛ₁)
sphere₂ = Body(BBMaterial(), posₛ₂, volₛ₂)
sphere₃ = Body(BBMaterial(), posₛ₃, volₛ₃)
4151-point Body{BBMaterial{NoCorrection}}:
1 point set(s):
4151-point set `all_points`
Material properties for the spheres are specified.
- Horizon $\delta = 3.015 \Delta x_s$
- Density $\rho = 7850\,\mathrm{kg}\,\mathrm{m}^{-3}$
- Youngs modulus $E = 210 \times 10^9 \, \mathrm{Pa}$
- Griffith's parameter $G_c = 1000 \, \mathrm{N} \, \mathrm{m}^{-1}$
All material points of the spheres have a initial velocity of $-20\, \mathrm{m} \, \mathrm{s}^{-1}$ in $z$-direction.
for sphere in (sphere₁, sphere₂, sphere₃)
material!(sphere; horizon=3.015ΔX₀ₛ, E=210e9, rho=7850, Gc=1000)
velocity_ic!(sphere, :all_points, :z, -20)
end
Multibody Setup? For the contact analysis, all bodies need to be specified in a MultibodySetup
.
ms = MultibodySetup(:plate => plate, :sphere1 => sphere₁, :sphere2 => sphere₂,
:sphere3 => sphere₃)
24953-point MultibodySetup:
12500-point Body{BBMaterial{EnergySurfaceCorrection}} with name `plate`
4151-point Body{BBMaterial{NoCorrection}} with name `sphere1`
4151-point Body{BBMaterial{NoCorrection}} with name `sphere2`
4151-point Body{BBMaterial{NoCorrection}} with name `sphere3`
Contact between the plate and the three spheres needs to be specified.
contact!(ms, :plate, :sphere1; radius=ΔX₀ₚ)
contact!(ms, :plate, :sphere2; radius=ΔX₀ₚ)
contact!(ms, :plate, :sphere3; radius=ΔX₀ₚ)
For this simulation, 3000 time steps with explicit time integration and the Velocity Verlet algorithm are used.
vv = VelocityVerlet(steps=3000)
VelocityVerlet:
n_steps 3000
safety_factor 0.7
Now we create a directory for the results and create a Job.
job = Job(ms, vv; path="results/logo")
Job:
spatial_setup 24953-point MultibodySetup
time_solver VelocityVerlet(n_steps=3000, safety_factor=0.7)
options export_allowed=true, freq=10
To complete everything, the Job is submitted for simulation.
submit(job)